If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+200x+1875=0
a = 1; b = 200; c = +1875;
Δ = b2-4ac
Δ = 2002-4·1·1875
Δ = 32500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32500}=\sqrt{2500*13}=\sqrt{2500}*\sqrt{13}=50\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-50\sqrt{13}}{2*1}=\frac{-200-50\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+50\sqrt{13}}{2*1}=\frac{-200+50\sqrt{13}}{2} $
| x+55+x+61+80=180 | | 120=360x/100-x | | 112+6x+2=90 | | -2x+11=6x | | x+x+2=-132 | | 79-5x+100=111-8x+24 | | 16(2x-10)=32 | | 3w+14=65 | | 4(1x-2)=24 | | 15=29–(2x) | | -17+n÷-3=-12 | | -15n+16=86+29n | | x-5=5(x+3)+x | | 5u+19=24 | | 6+4-2=+4x-8 | | 7=1/w | | x/4+7=8 | | 5^(x+2)=11^(x) | | x+1-2x=-13 | | 1/4(2x-4)+5=-3/8(x+1) | | 3(2-3x)+4=5(×+2) | | 3(x+3)4-2x+1/2=0.5 | | 5^x+2=11^x | | -18=n÷4-25 | | 7x×12=x-6 | | 125+120x=180x+110 | | 7x+35+54=180 | | 4n+0.42=15.76 | | 700+(30x)=6,100 | | y=15000(1.06)^2 | | 2(x-1)/x=1+2/x(x-1) | | 700+30x=6,100 |